pyva.properties.structuralPropertyClasses.PlateProp
- class pyva.properties.structuralPropertyClasses.PlateProp(thickness, material)
Bases:
object
Class for thin plates.
The plate property class deals with the dynamics of thin plates. This comprises all waves and dynamics of isotropic plates.
Due to this simplicity there are only two attributes
- thickness
plate thickness.
- Type:
float
- __init__(thickness, material)
Class constructor of plate property
- Parameters:
thickness (float) – plate thickness.
material (IsoMat) – isotropic plate material.
- Return type:
None.
Methods
__init__
(thickness, material)Class constructor of plate property
c_B_group
(omega)Bending group wave speed
c_B_phase
(omega)Bending phase wave speed
c_L
()Longitudinal wave speed
c_S
()Shear wave speed
c_T
()Shear wave speed
coincidence_frequency
([c0])coincidence frequency of flat plate
Structural edge radiation stiffness for specific wave types
edge_radiation_stiffness_wavenumber
(omega, ...)Structural radiation stiffness of straight plate edges
Structural radiation stiffness of straight plate edges
Structural edge radiation stiffness for specific wave types.
Structural edge radiation stiffness for specific wave types
edge_wave_amplitude_radiated_power
(Psi, ...)Calculates the radiated power from wave amplidute
Efficient radiation stiffness related to wave amplitude
edge_wave_excitation_displacement
(omega, ...)Calculates the edge displacement due to outgoing wave
edge_wave_excitation_force
(omega, ...[, matrix])wave_excitation_force calculates the blocked force wave amplitudes into edge harmonic diplacement
Cross correlation of excitation forces due to wave theory
force_excitation_power
(omega[, force])Power input due to normal force input
muL
(omega, kx)Longitudiunal wave propagation constant in y-direction
muS
(omega, kx)Shear wave propagation constant in y-direction
muT
(omega, kx)plate_wavenumber
(omega, wave_DOF)Wavenumber of plates
point_stiffness
(omega)Normal force point stiffness
point_stiffness_edge
(omega)Normal force point edge stiffness
transfer_impedance
(omega, kx)Transfer impedance of infinite plates
transmission_coefficient_angular
(omega, fluid1)Transmission coefficient of plane wave transmission through infinite plates
transmission_coefficient_diffuse
(omega, fluid1)Diffuse transmission coeffient of infinite plates
w_inf
(omega, r, Fz)Displacement due to normal point force excitatoin
wave_transformation_matrix
(omega, wavenumber)Transformation matrix from wave amplitude coordinates into edge harmonic displacement.
wave_transformation_matrix_LM
(omega, wavenumber)Transformation matrix from wave amplitude coordinates into edge harmonic displacement.
wavelength_B
(omega)Bending wavelength
wavelength_L
(omega)Longitudial wavelength
wavelength_S
([omega])Shear wavelength
wavelength_T
([omega])wavenumber_B
(omega[, comp])Bending wavenumber
wavenumber_B_4
(omega)wavenumber_L
([omega])Longitudinal wavenumber
wavenumber_S
([omega])Shear wavenumber
wavenumber_T
([omega])wavenumber_constants
(omega)Bending wavenumber
Attributes
real bending stiffness
complex bending stiffness with consideration of damping loss.
Bending stiffness per area mass
Complex bending stiffness per area mass
longitudinal stiffness
transversal stiffness
complex transversal stiffness.
Mass per area
Normal force point impedance
Normal force point edge impedance
- property B
real bending stiffness
- Returns:
bending stiffness.
- Return type:
float
- property B_complex
complex bending stiffness with consideration of damping loss.
- Returns:
bending stiffness.
- Return type:
complex
- property B_per_M
Bending stiffness per area mass
- Returns:
Bending stiffness per area specific mass.
- Return type:
float
- property B_per_M_complex
Complex bending stiffness per area mass
- Returns:
Bending stiffness per area specific mass.
- Return type:
complex
- property C
longitudinal stiffness
- Returns:
transversal stiffness.
- Return type:
float
- property S
transversal stiffness
- Returns:
transversal stiffness.
- Return type:
float
- property S_complex
complex transversal stiffness.
- Returns:
complex transversal stiffness.
- Return type:
complex
- c_B_group(omega)
Bending group wave speed
- Parameters:
omega (float) – angular frequency.
- Returns:
group wave speed.
- Return type:
float
- c_B_phase(omega)
Bending phase wave speed
- Parameters:
omega (float) – angular frequency.
- Returns:
phase wave speed.
- Return type:
float
- c_L()
Longitudinal wave speed
- Returns:
wave speed.
- Return type:
float
- c_S()
Shear wave speed
- Returns:
wave speed.
- Return type:
float
- c_T()
Shear wave speed
- Returns:
wave speed.
- Return type:
float
- coincidence_frequency(c0=343.0)
coincidence frequency of flat plate
- Parameters:
c0 (float) – speed of sound of fluid
- Returns:
angular coincidence frequency in s^(-1)
- Return type:
float
- edge_imaginary_radiation_stiffness_wavenumber(omega, wavenumber, wave_DOF=0)
Structural edge radiation stiffness for specific wave types
Due to special relationships there are different formulations of the imaginary radiation stiffness as following directly from the radation_stiffness_wavenumber except for bendig waves where both expressions are similar. See [Pei2022] for details
Will be deprecated in the new future, because it is equivalent to the skew hermitian matrix.
- Parameters:
omega (float) – angular frequency
wavenumber (float) – wavenumber kx
wave_DOF (int) – identifier of radiation matrix 0 all waves, 1,2,(3 or 4) correponds to longitudinal, shear and bending wave 5 stands for inplane (1+2)
- Returns:
matrix [4 x 4] of the stiffness element
- Return type:
- edge_radiation_stiffness_wavenumber(omega, wavenumber, wave_DOF=0)
Structural radiation stiffness of straight plate edges
This method calculates the structural dynamic radiation stiffness matrix of a semi-infinite plate in the wave number domain. The force-displacement relations in wave number domain are derived from the harmonic solution of the vibrating plate equation, as explained in [Pei2022]. Given a cartesian system with the x-axis along the plate edge and the y-axix looking inside the plate, four degrees of freedom are considered at the edge of the plate: three displacement (u,v,w) and the rotation (theta) in the edge direction (x), so that the force-displacement function is a 4 X 4 matrix, function of wavenumber and time frequency, where the out-of-plane behavior is decoupled from the in-plane behavior. The matrix is given in terms of its single coefficients a_ij.
- Parameters:
omega (float) – angular frequency
wavenumber (float) – wavenumber kx
wave_DOF (int) – identifier of radiation matrix 0 all waves, 1,2,3 correponds to longitudinal, shear and bending wave
- Returns:
matrix [Nkx x 4 x 4] of the stiffness element
- Return type:
nd.array
- edge_radiation_stiffness_wavenumber_LM(omega, wavenumber, wave_DOF=0)
Structural radiation stiffness of straight plate edges
This method calculates the structural dynamic radiation stiffness matrix of a semi-infinite plate in the wave number domain. The force-displacement relations in wave number domain are derived from the harmonic solution of the vibrating plate equation, as explained in [Pei2022]. Given a cartesian system with the x-axis along the plate edge and the y-axix looking inside the plate, four degrees of freedom are considered at the edge of the plate: three displacement (u,v,w) and the rotation (theta) in the edge direction (x), so that the force-displacement function is a 4 X 4 matrix, function of wavenumber and time frequency, where the out-of-plane behavior is decoupled from the in-plane behavior. The matrix is given in terms of its single coefficients a_ij.
- Parameters:
omega (float) – angular frequency
wavenumber (float) – wavenumber kx
wave_DOF (int) – identifier of radiation matrix 0 all waves, 1,2,3 correponds to longitudinal, shear and bending wave
- Returns:
matrix [4 x 4] of the stiffness element
- Return type:
- edge_skew_radiation_stiffness_wavenumber(omega, wavenumber, wave_DOF=0)
Structural edge radiation stiffness for specific wave types.
Due to special relationships there are different formulations of the imaginary radiation stiffness as following directly from the radation_stiffness_wavenumber except for bendig waves where both expressions are similar. See [Pei2022] for details
- Parameters:
omega (float) – angular frequency
wavenumber (float) – wavenumber kx
wave_DOF (int) – identifier of radiation matrix 0 all waves, 1,2,(3 or 4) correponds to longitudinal, shear and bending wave 5 stands for inplane (1+2)
- Returns:
matrix [Nx x 4 x 4] of the stiffness element
- Return type:
np.ndarray
- edge_skew_radiation_stiffness_wavenumber_LM(omega, wavenumber, wave_DOF=0)
Structural edge radiation stiffness for specific wave types
Due to special relationships there are different formulations of the imaginary radiation stiffness as following directly from the radation_stiffness_wavenumber except for bendig waves where both expressions are similar. See [Pei2022] for details
- Parameters:
omega (float) – angular frequency
wavenumber (float) – wavenumber kx
wave_DOF (int) – identifier of radiation matrix 0 all waves, 1,2,(3 or 4) correponds to longitudinal, shear and bending wave 5 stands for inplane (1+2)
- Returns:
matrix [4 x 4] of the stiffness element
- Return type:
- edge_wave_amplitude_radiated_power(Psi, omega, wavenumber, wave_DOF)
Calculates the radiated power from wave amplidute
- Parameters:
Psi (complex) – wave amplitude.
omega (float) – angular frequency.
wavenumber (float) – edge wavenuber.
wave_DOF (int) – wave degrees of freedom.
- Raises:
ValueError – DESCRIPTION.
- Returns:
radiated power.
- Return type:
float
- edge_wave_amplitude_radiation_stiffness(omega, wavenumber, wave_DOF)
Efficient radiation stiffness related to wave amplitude
This method uses the power expressions to derive efficient stiffness values
- Parameters:
omega (float) – angular frequency.
wavenumber (float) – edge wavenumber.
wave_DOF (int) – wave degree of freedom.
- Raises:
ValueError – DESCRIPTION.
- Returns:
efficient wave radiation stiffeness.
- Return type:
float
- edge_wave_excitation_displacement(omega, wavenumber, wave_DOF)
Calculates the edge displacement due to outgoing wave
- Parameters:
omega (float) – angular frequency.
wavenumber (float) – edge wavenumber.
wave_DOF (int) – wave degree of freedom.
Returs –
------ – vector [4 x 1] of the displacement [u,v,w,eta]
- edge_wave_excitation_force(omega, wavenumber, wave_DOF, matrix=False)
wave_excitation_force calculates the blocked force wave amplitudes into edge harmonic diplacement
- Parameters:
omega (float) – angular frequency.
wavenumber (float) – edge wavenumber.
wave_DOF (int) – wave degree of freedom.
- Returns:
vector [Fx,Fz,Fz,Mx]^T of force
- Return type:
- edge_wave_excitation_force_cross_correlation(omega, wavenumber, wave_DOF, matrix=False)
Cross correlation of excitation forces due to wave theory
The main purpose of this method is to check if the blocked force assumption leads to the same csd as the diffuse field reciprocity
- Parameters:
omega (float) – angular frequency.
wavenumber (float) – edge wavenumber.
wave_DOF (int) – wave degree of freedom.
matrix (bool) – switch wether the analytical or the direct solution is used- Default value is True-
- Returns:
[4 x 4] csd matrix
- Return type:
- force_excitation_power(omega, force=1.0)
Power input due to normal force input
- Parameters:
omega (float) – angular frequency.
force (complex, optional) – normal force. The default is 1.
- Returns:
power.
- Return type:
float
- property mass_per_area
Mass per area
- Returns:
mass per area.
- Return type:
float
- muL(omega, kx)
Longitudiunal wave propagation constant in y-direction
- Parameters:
omega (TYPE) – DESCRIPTION.
kx (float) – edge wavenumber.
- Returns:
uL – propagation constant.
- Return type:
complex
- muS(omega, kx)
Shear wave propagation constant in y-direction
- Parameters:
omega (TYPE) – DESCRIPTION.
kx (float) – edge wavenumber.
- Returns:
uS – propagation constant.
- Return type:
complex
- plate_wavenumber(omega, wave_DOF)
Wavenumber of plates
- Parameters:
omega (float) – angular frequency.
wave_DOF (int) – wave degree of freedom.
- Raises:
ValueError – DESCRIPTION.
- Returns:
k_plate – DESCRIPTION.
- Return type:
TYPE
- property point_impedance
Normal force point impedance
- Returns:
mechanical impedance.
- Return type:
float
- property point_impedance_edge
Normal force point edge impedance
- Returns:
mechanical impedance.
- Return type:
float
- point_stiffness(omega)
Normal force point stiffness
- Returns:
mechanical stiffness.
- Return type:
float
- point_stiffness_edge(omega)
Normal force point edge stiffness
- Returns:
mechanical stiffness.
- Return type:
float
- transfer_impedance(omega, kx)
Transfer impedance of infinite plates
The transfer impedanc is used in the transfer matrix applications using infinite plate theory
- Parameters:
omega (float) – angular frequency
kx (float) – wavenumer of incomiing wave
- Returns:
The transfer impedance of infinite plates
- Return type:
complex
- transmission_coefficient_angular(omega, fluid1, theta=0, fluid2='none')
Transmission coefficient of plane wave transmission through infinite plates
- Parameters:
omega (float) – angular frequency
theta (float) – angle of incidence in radiants 0 <= theta <= pi/2
fluid1 (fluid) – fluid on irradiation side or both if fluid 2 is not given
fluid2 (fluid) – fluid on transmission side
- Returns:
angular transmission coefficient of plateprop
- Return type:
float
- transmission_coefficient_diffuse(omega, fluid1, fluid2='none', theta_max=1.361356816555577, theta_step=0.017453292519943295)
Diffuse transmission coeffient of infinite plates
The diffuse field is implemented by angle intergration
- Parameters:
omega (float) – angular frequency
fluid1 (fluid) – fluid on irradiation side or both if fluid 2 is not given
fluid2 (fluid) – fluid on transmission side
theta_max (float, optional) – max angle of incidence in radiants 0 <= theta <= pi/2. Default value is np.pi*78/180
theta_step (float, optional) – max angle of incidence in radiants 0 <= theta <= pi/2. Default value is np.pi/180
- Returns:
Diffuse field transmission coefficient
- Return type:
float
- w_inf(omega, r, Fz)
Displacement due to normal point force excitatoin
- Parameters:
omega (float) – angular frequency.
r (float) – distance source - receiver.
Fz (complex) – Normal force amplitude.
- Returns:
Displacement.
- Return type:
complex
- wave_transformation_matrix(omega, wavenumber, inv=False)
Transformation matrix from wave amplitude coordinates into edge harmonic displacement.
- Parameters:
omega (float) – angular frequency
wavenumber (float) – wavenumber
inv (bool) – switch for inverse version
- Returns:
[Nkx x 4 x 4] transformation matrix
- Return type:
np.ndarray
- wave_transformation_matrix_LM(omega, wavenumber, inv=False)
Transformation matrix from wave amplitude coordinates into edge harmonic displacement.
LinearMatrix version
- Parameters:
omega (float) – angular frequency
wavenumber (float) – wavenumber
inv (bool) – switch for inverse version
- Returns:
[4 x 4] transformation matrix
- Return type:
LinearMmatrix
- wavelength_B(omega)
Bending wavelength
- Parameters:
omega (float) – angular frequency.
- Returns:
wavelength.
- Return type:
float
- wavelength_L(omega)
Longitudial wavelength
- Parameters:
omega (float, optional) – angular frequency. The default is 0.
- Returns:
wavelength.
- Return type:
float
- wavelength_S(omega=0.0)
Shear wavelength
- Parameters:
omega (float, optional) – angular frequency. The default is 0.
- Returns:
wavelength.
- Return type:
float
- wavenumber_B(omega, comp=False)
Bending wavenumber
- Parameters:
omega (float) – angular frequency.
comp (bool, optional) – Switch for complex consideration of damping. The default is False.
- Returns:
wavenumber.
- Return type:
complex
- wavenumber_L(omega=0.0)
Longitudinal wavenumber
- Parameters:
omega (float, optional) – angular frequency. The default is 0.
- Returns:
wavenumber.
- Return type:
float
- wavenumber_S(omega=0.0)
Shear wavenumber
- Parameters:
omega (float, optional) – angular frequency. The default is 0.
- Returns:
wavenumber.
- Return type:
float
- wavenumber_constants(omega)
Bending wavenumber
- Parameters:
omega (float) – angular frequency.
- Returns:
(kL,LS,kB).
- Return type:
tuple